
UCRL-CONF-211703

Large-Scale First-Principles Molecular
Dynamics Simulations on the BlueGene/L
Platform using the Qbox Code

F. Gygi, E. W. Draeger, B. R. de Supinski, R. K. Yates,
F. Franchetti, S. Kral, J. Lorenz, C. Ueberhuber, J. A.
Gunnels, J. C. Sexton

April 26, 2005

Supercomputing 05
Seattle, WA, United States
November 12, 2005 through November 18, 2005

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Large-Scale First-Principles Molecular Dynamics
Simulations on the BlueGene/L Platform using the Qbox
Code

François Gygi, Erik W. Draeger, Bronis R. de Supinski, Robert K. Yates
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
Livermore, CA 94551

Franz Franchetti
Department of Electrical and Computer Engineering
Carnegie Mellon University

Stefan Kral, Juergen Lorenz, Christoph W. Ueberhuber
Institute of Analysis and Scientific Computing
Vienna University of Technology, Vienna, Austria

John A. Gunnels, James C. Sexton
IBM Thomas J. Watson Research Center
Yorktown Heights, NY

Abstract
We demonstrate that the Qbox code supports unprecedented large-scale First-Principles
Molecular Dynamics (FPMD) applications on the BlueGene/L supercomputer. Qbox is
an FPMD implementation specifically designed for large-scale parallel platforms such as
BlueGene/L. Strong scaling tests for a Materials Science application show an 86%
scaling efficiency between 1024 and 32,768 CPUs. Measurements of performance by
means of hardware counters show that 37% of the peak FPU performance can be
attained.

Introduction
First-Principles Molecular Dynamics (FPMD) is an accurate atomistic simulation
approach that is routinely applied to a variety of areas including solid-state physics,
chemistry, biochemistry and nanotechnology [1]. It combines a quantum mechanical
description of electrons with a classical description of atomic nuclei. The Newton
equations of motion for all nuclei are integrated in time in order to simulate dynamical
properties of physical systems at finite temperature. At each discrete time step of the
trajectory, the forces acting on the nuclei are derived from a calculation of the electronic
properties of the system.

The electronic structure calculation is the most time-consuming part of an FPMD
simulation, and limits the size of tractable systems to a few hundred atoms on most
currently available parallel computers. It consists in solving the Kohn-Sham (KS)
equations [2], a set of non-linear, coupled integro-differential partial differential

equations. Considerable efforts have been devoted over the past three decades to the
development of efficient implementations of the electronic structure computation. In its
most common implementation, the solution of the Kohn-Sham equations has O(N3)
complexity, where N is the number of atoms.

In this paper, we report on FPMD simulations performed using the Qbox code on the
BlueGene/L (BG/L) computer installed at Lawrence Livermore National Laboratory.
Qbox is a parallel implementation of the FPMD method designed specifically for large
parallel platforms, including BlueGene/L. Simulations were performed using up to
32,768 processors, including up to 1000 atoms. Performance measurements of strong
scaling show that an 86% parallel efficiency is obtained between 1k and 32k CPUs.
Floating point operation counts measured with hardware performance counters show that
37% of peak performance is attained when using 4k CPUs.

Predictive Simulations of Materials Properties
Although the applicability of FPMD is not limited to a specific class of physical system,
we focus in this paper on an important issue of Materials Science, the simulation of
metals under extreme conditions. Predicting the properties of metals at high pressures and
high temperatures has been a longstanding goal of Materials Science and high energy
density physics. Experimental measurements of these properties can be extremely
challenging because of the difficulty to achieve and maintain extreme conditions of
pressure and temperature. FPMD simulations offer the possibility of predicting these
properties without relying on any empirical or adjusted parameters. The validation of the
physical models used in FPMD simulations is an important step toward this goal, and
requires large computational resources.

In this paper, we demonstrate the feasibility of FPMD simulations on large samples of
transition metals. The sample chosen for the present performance study consists of 1000
molybdenum atoms (12,000 electrons) at ambient pressure conditions, and includes a
highly accurate treatment of electron-ion interactions. Norm-conserving semi-local
pseudopotentials were used to represent the electron-ion interactions. A total of 64
projectors were used (8 radial quadrature points for p and d channels) on each atom to
represent the semi-local potentials. A plane wave energy cutoff of 44 Ry defines the basis
set used to describe the electronic wave functions. We choose to work at ambient
pressure since this is the most CPU-intensive calculation: higher pressures involve
smaller simulation volumes and are correspondingly less demanding.

This calculation is considerably larger that any previously feasible FPMD simulation.
Our demonstration that BG/L’s large computing power makes such large simulations
feasible opens the way to accurate simulations of the properties of metals, including the
calculation of melting temperatures using the two-phase simulation technique [3], and the
calculation of defect energies and defect migration processes.

Qbox: A Highly Scalable FPMD Simulation Implementation
Qbox is a C++ implementation of the FPMD method. It is developed at the Center for
Applied Scientific Computing (CASC), Lawrence Livermore National Laboratory

(LLNL). A detailed description of the code has been given elsewhere [4]. Qbox exploits
parallelism using the MPI message-passing paradigm. The design of Qbox yields good
load balance through an efficient data layout and a careful management of the data flow
during the most time consuming operations. Qbox solves the Kohn-Sham (KS) equations
within the pseudopotential, plane wave formalism. The solution of the KS equations has
been extensively discussed by various authors and will not be repeated here [1].

BlueGene/L: A Scalable Architecture for Scientific Simulations
BlueGene/L, as designed and implemented by a partnership between Lawrence
Livermore National Laboratory (LLNL) and IBM, is a tightly-integrated large-scale
computing platform. Its compute node ASICs include all networking and processor
functionality; in fact, a compute node uses only that ASIC and nine DRAM chips. This
system-on-a-chip design results in extremely high power and space efficiency. The full
details of the system architecture are covered elsewhere [5]; we give a brief overview
with a focus on aspects that are particularly relevant to Qbox here.

Individual compute ASICs represent a custom design based on off-the-shelf component
designs. They feature two 32-bit superscalar PowerPC 440 embedded cores that are
clocked at 700 MHz. There are two modes to use the cores: communication coprocessor,
in which one core is dedicated to servicing communication requests, and virtual node
mode, in which two MPI tasks run on each node. Although the former sacrifices half of
the compute power of the machine, it supports higher realized network bandwidth and
was the original intent of the hardware design.

The chip associates two copies of the PPC floating point unit (FPU) with each core that
function as a SIMD-like double FPU [6]. The double FPU is not two independent FPUs
but instead supports an extensive set of parallel instructions for which the double
precision operands can come from the register file of either unit. The instructions include

a variety of paired multiply-add
operations, resulting in a peak of four
floating point operations (FLOPs) per
cycle per core. An application’s ability to
use these SIMD-like parallel instructions
is crucial to its overall performance. Due
to limitations in the compilers currently
available, Qbox currently only uses these
instructions in the DGEMM and FFT
implementations discussed later in this
paper.

The integrated BG/L platform significantly
increases the scale of high-end computing
platforms. The final machine, expected in
the fall of 2005, will have 65,536 compute
nodes for a total peak performance of

360TF; half of that machine is already installed and in use at LLNL. As shown in Figure
1, the final system will include 1024 I/O nodes that are nearly identical to the compute
nodes. The difference is that they include gigabit ethernet (Gig-E) connections that

WAN
other

Archive

VIS

BGL
Compute

Nodes
(CN)

65,536

BGL
I/O

Nodes
(ION)
1,024

G
ig

ab
it

E
th

er
ne

t F
ed

er
at

ed
 S

w
itc

h
2,

04
8

po
rt

s

Front End
Nodes
(FEN)

Service
Node
(SN)

Control Management
Network

1024

8

8

8

512

128

128

240

OST
CWFS

1000BaseT (1 GbE)

Figure 1: Integrated BlueGene/L Platform

connect the system to a large parallel file system. They also connect the system to the
front-end nodes, on which users compile their codes and launch their jobs.

The system includes five networks: three dimensional torus, tree, global interrupt, Gig-E
I/O and control. The compute nodes communicate to the IO nodes over the tree, which is
also used for a subset of MPI_COMM_WORLD collective operations. Point-to-point
communication and collectives on subcommunicators use the torus network. Since almost
all MPI communication in Qbox is through BLACS calls or ScaLAPACK routines that
use derived communicators that represent a column or row of a process grid, we focus on
the torus network. Each compute node has six bidirectional torus links with a raw
hardware performance of 175 MB/s per link; measured MPI pingpong bandwidth is 150
MB/s. However, on-node message processing limits total realized MPI bandwidth over
the torus links to less than 500 MB/s. The torus includes broadcast support that allows
optimized implementations of many MPI collectives. Currently, those implementations
are limited to communicators that form rectangular subprisms of the torus.

Node mapping strategies
Unlike many applications for which a simple 3D domain decomposition naturally maps
to a 3D torus architecture, the KS equations in the plane wave formalism do no exhibit
any obvious way to map parts of the calculation to the torus. The data layout adopted in
Qbox distributes the degrees of freedom describing electronic wave functions on a two
dimensional process grid similar to the process grids used in the BLACS communication
library [7]. MPI subcommunicators are defined appropriately in order to facilitate
communication along rows and columns of the process grid. In order to obtain a good
connectivity between subcommunicators, it is necessary to use node maps that are more
complex than the XYZ, YZX or ZXY orderings provided by default. We have explored a
variety of node mappings in order to optimize performance.

Figure 1 Illustration of two choices of node mappings for a 16k-node partition. The nodes associated to a
column of the process grid are mapped to 3D torus half-planes. Each color represents the nodes belonging
to one column. Half-planes corresponding to successive columns share a common face for maximal
connectivity (e.g. column 0 is red and column 1 is green). Although the left mapping leads to good
connectivity between most neighboring columns, some (e.g., columns 31 and 32) only share an edge. A
twist in the mapping (right) maximizes local connectivity between columns and avoids such discontinuities.

This optimization must be carried out for each partition size, since the shape of a partition
changes with size. For example, a 4k-node partition consists of a 8x16x32 block of
nodes, whereas a 16k partition is a 16x32x32 block. As a consequence, the optimal map
for one partition size can differ substantially from the optimal map for another partition.
This process is facilitated by the capability to specify a node mapping at run time using
the BGLMPI_MAPPING environment variable. Figure 1 shows an example of two node
mappings used on a 16k-node partition. The performance results reported in this paper
were obtained with the best mappings that we developed to date, although our
investigation of optimal node mapping strategies is ongoing.

Computational Kernels
When using the plane-wave representation, an efficient solution of the KS equations
depends critically on two computational kernels: dense linear algebra and 3D complex
Fourier transforms (FT). In the following sections, we describe the optimized
implementations of these kernels used in Qbox.

Linear Algebra
Dense linear algebra is implemented through the ScaLAPACK library [7]. ScaLAPACK
performs a wide variety of matrix operations on large, distributed, dense matrices. It
places some constraints on the data layout. ScaLAPACK is built upon the BLACS
communication library, which itself invokes MPI functions. The performance of
ScaLAPACK depends critically on the availability of efficient BLAS subroutines. In
particular, the ScaLAPACK matrix multiplication function pdgemm makes extensive use
of the BLAS3 dgemm matrix multiplication kernel. We used a hand-optimized version of
the dgemm kernel that we describe in more detail below.

Optimized DGEMM library
While the performance of the routine is dependent upon taking advantage of the hardware
features at each level of the memory hierarchy, missteps at the lower-levels have a
greater impact than analogously suboptimal decisions that involve higher levels of
memory. Similarly, the design and implementation of the optimized dgemm routine on
BG/L is most easily understood when described from the bottom up.

Mathematical and Memory-based Operations: SIMD Vector Units
The peak computational flop rate of a BG/L processor is based upon the assumption that
a SIMD FMA can execute during every cycle. If computationally intensive routines
cannot take advantage of SIMD instructions (or FMAs), they will not evince more than
50% the theoretical peak rate of the processor.

Fortunately, general matrix-multiplication is dominated by FMAs and BG/L’s relatively
rich instruction set allows one to utilize the SIMD FMA instructions for the vast majority
of computations involved in dgemm. The only prerequisite to taking advantage of these
instructions is to load the registers utilized for computations with useful data (i.e. not pad
them or throw away half of their result). Fortunately, the load-primary and load-
secondary instructions allow this, regardless of the relative alignment of the input data.

Further, since the number of computations involved in dgemm is an order of magnitude
greater than the number of data moves (loads and stores), data copies can be employed to
align data on 16-byte boundaries, enabling the use of SIMD loads almost exclusively.

The Computational Kernel: Register-Based View
Traditionally, the matrix-multiplication computational core, or “kernel routine,” is
carefully written so as to respect the architecture of the machine under consideration.
Typically, and on BG/L, the most important considerations are: 1) the number of
architected (useable) registers, 2) the latency of the levels of the memory hierarchy that
are being targeted and, somewhat less importantly, 3) the bandwidth between the register
file and the level of the memory hierarchy being targeted.

BG/L’s cores each have 32 accessible SIMD (length 2) floating-point registers. We used
these registers to target a 6x6xK matrix multiplication kernel as our main computational
workhorse. Our register blocking uses 30 SIMD registers: six for A operands, six for B
operands, and 18 for C operands. The computation is composed as two rank-1 updates of
the C-registers, yielding, simplistically, an 18-cycle latency between outer products and
thus tolerates more than 18 cycles of latency for loads.

L1 Cache Considerations
BG/L’s L1 caches are 16-way, 64-set associative and use a round-robin replacement
policy [8]. Because of the excellent latency and bandwidth characteristics of its L3/L2
cache, we considered the L1 cache optimizations secondary in the construction of the
dgemm routine; we do not cover them in this paper due to space constraints. It is noted,
however, that it is important to block correctly for the L1 cache in order to approach
optimal performance for small matrix multiplications.

The L2 Cache and Pre-fetching
BG/L’s L2 cache is considerably smaller than the L1 cache (2KB vs. 32KB). The L2
cache acts as a prefetch buffer for data that is streaming from higher levels of memory to
the L1 cache. For sequential data accesses, this prefetch mechanism yields a latency that
is less than that needed by our register kernel. In order to use this prefetch buffer
effectively, algorithms should not use more streams than the it can handle optimally.
Since it can efficiently handle seven streams in normal mode, we can safely use one
stream for the reformatted A matrix and one stream for the reformatted B matrix.
Alternate modes of use would have made three streams the most effective design point,
and the routine was prototyped before final hardware decisions had been made.

L3 Interface
The theoretical peak bandwidth from the L3 cache is 5.33 bytes/cycle, which equates to
fetching a quadword every 3 cycles (or an L1 cache line every 6 cycles). In our 6x6x2
register kernel, the inner loop (the part that is neither loading nor storing C) requires
exactly one SIMD (quadword) load every three cycles. Thus, it is not surprising that the
inner loop of this routine runs between 95% and 100% of the peak rate of the machine
once the data is in L3 and the L2 prefetch mechanism is engaged.

DDR Bandwidth
Since we have blocked the computation to run out of L3, BG/L’s DDR bandwidth and
latency might seem unimportant. However, they do impact the performance of matrix
multiplication, especially for relatively small matrices.

While the dgemm routine is blocked to take advantage of the L3 cache, a preliminary step
copies and reformats the data in the A and B matrices. This step, typically, copies data
from DDR to DDR or from DDR to L3. Although this is a negligible start-up cost with
large matrices, this overhead may be a sizeable fraction of compute time with small
matrices. Further, computation occasionally requires bringing data from DDR and
keeping it in the L3 (or L1 in the case of small matrices) cache even for large matrices.

Fourier Transforms
Qbox takes advantage of the fact that many 3D FTs must be performed simultaneously
(one for each electronic state) during an electronic structure calculation. This allows
Qbox to dispatch the 3D transforms to subpartitions of the machine, and thus requires
only moderate scalability of the 3D FT kernel. A custom parallel implementation of 3D
FT was developed and shows excellent scaling properties on up to 512 tasks. Scaling
beyond this size is not required since a sufficient number of transforms can occur
simultaneously to use the entire machine. The 3D FT kernel requires an efficient
implementation of single-node, one-dimensional complex FTs. We use the FFTW-GEL
library that was optimized for BG/L.

FFTW-GEL for BlueGene/L
Qbox calls one-dimensional single-processor FFT kernel routines within its computation.
Among other libraries, it can use the portable open-source library FFTW 2.1.5 [9]. In this
paper, we use FFTW-GEL for BG/L [10], an FFTW 2.1.5 replacement for BG/L based on
the SIMD FFTW replacement provided by FFTW-GEL [11]. FFTW-GEL is available for
AMD and Intel platforms and BG/L.

FFTW automatically optimizes FFT computation on a wide range of machines. FFTW’s
codelet compiler genfft automatically generates small FFT kernel routines called
codelets, minimizing the number of arithmetic operations and ordering these for locality.
In an initialization step at runtime, FFTW’s planner finds the fastest recursive
decomposition of a given FFT computation into these codelets by applying the Cooley-
Tukey FFT algorithm and dynamic programming.

FFTW 2.1.5 codelets account for almost all of FFTW’s computational work. They are
generated as ANSI C straight-line code using real scalar arithmetic and feature
complicated dependencies and (almost) no control flow. Compiling these codelets for
BG/L’s double FPU does not result in good utilization of the two-way vector instructions
provided by the double FPU due to the complicated data dependencies which are beyond
the vectorization analysis in the xlC compiler for BG/L. FFTW-GEL for BG/L solves this
problem by replacing the original scalar FFTW codelets by explicitly vectorized double
FPU codelets. For BG/L, these vector codelets are generated using intrinsic functions and
the C99 complex data type provided by the IBM XL C compiler for BG/L.

At the heart of FFTW-GEL for BG/L is the Vienna MAP vectorizer [12]. MAP two-way
vectorizes large computational basic blocks by a depth-first search with chronological
backtracking. It produces explicitly vectorized FFTW codelet with solely two-way vector
instructions and a minimum of data reorganization instructions. This process fuses scalar
variables into vector variables, which requires fusing the corresponding scalar operations
into vector operations. This creates a larger required search space since the scalar
variables and operations can be fused in multiple ways. MAP’s vectorization rules that
describe the variable and operation pairing encode machine characteristics like the double
FPU’s special fused multiply-add instructions. As MAP commits to the first found
solution, the order of MAP’s vectorization rules can guide the vectorization process. It
must be noted that the performance increase of FFTW-GEL due to SIMD instructions is
large (near two-fold speedup) when measured on a hot L1 cache (e.g. by transforming the
same data multiple times). The increase that we observe in Qbox is smaller, since the data
to be transformed far exceeds the size of the L1 cache, and memory bandwidth limits
performance. A speedup of 20-25% was measured when comparing the FFTW-GEL
library with the conventional FFTW 2.1.5 implementation in that case.

Performance measurements
We now describe the process used to measure the performance of Qbox on BG/L.

FPU operations count
We counted floating point operations using the APC performance counter library. This
library allows the user to access the compute ASIC’s hardware performance counters.
APC tracks several events including FPU operations, some SIMD operations and load
and store operations. APC can limit counting to selected sections of the code by calling
ApcStart()and ApcStop()functions before and after these sections. Operation
counts are saved in binary format in separate files for each task at the end of the run. The
post-processing program apc_scan then produces a cumulative report of operation
counts, as well as of the total number of cycles used. By default, the APC library limits
the number of data files to 16. We use the APC_SIZE environment variable to obtain one
file per task, since the number of operations performed on each node is not strictly
identical, especially during ScaLAPACK calls.

We instrumented Qbox with APC calls around its main iteration loop. The initialization
phase that involves opening and reading input files and allocating large objects was not
included in the performance calculation. Since molecular dynamics simulations are
typically run for thousands of iterations, our performance measurements are
representative of the use of Qbox in actual simulations.

BG/L’s hardware counters do not include events for SIMD add/subtract, or multiply
operations (although the fused multiply-add operations can be counted). Thus, some
SIMD operations may not be included in the count. For this reason, the FP performance
cannot be extracted from a single measurement of the operation count and of the total
number of cycles used. The number of cycles and the number of operations must be
obtained from separate measurements using the following procedure:

1) Compile the code without SIMD instructions (i.e., use –qarch=440 with the xlC
compiler). Measure the total FPU operation count with this executable.

2) Recompile the code, enabling the SIMD instructions (using –qarch=440d). Obtain
the total number of cycles and, thus, the total time with this executable. The FP
operation count in this case is potentially inaccurate and should be discarded.

3) Divide the total FP operation count by the total time to compute the performance.

This procedure is further complicated in the case where some libraries are hand coded to
contain SIMD instructions, either because they are written in assembly language, or
because their high-level source code contains SIMD intrinsics. In this case, the number of
FP operations cannot be measured by disabling the SIMD operations as in step 1) above.
This applies in our case to the FFTW-GEL library and to the DGEMM optimized library.

In the case of the FFTW library, we tested the effect of the SIMD instructions in FFTW-
GEL by comparing its performance to the FFTW 2.1.3 library compiled without the
SIMD option. These measurements indicate that the FFTW-GEL performance is 20-25%
higher than the standard FFTW 2.1.3 library when used on multiple transforms of size
comparable to those done in other Qbox runs. Since the total amount of time spent in the
FFTW library is a relatively small fraction of the total time, we use the FP operation
count obtained with the FFTW-GEL library event though the actual operation count is
25% higher. Our performance estimation is therefore an underestimation of the actual
performance. We plan to complete more accurate measurement of the exact (higher
performance) numbers in the coming month and include them in the final submission.

In the case of the DGEMM optimized library, we observed that the operation count
reported by the APC library does indeed correspond to the total number of FP operations,
by comparison with a standard implementation of the BLAS library. This last property is
due to the fact that the DGEMM optimized library uses essentially only SIMD fused
multiply-add operations, which are properly counted by the APC library.

Results
We report in Table 1 our measurements of the performance of Qbox for a simulation of
molybdenum including 1000 atoms and 12000 electrons.

Simulations were performed on partitions of increasing sizes on the 32k-node LLNL
BG/L platform, using co-processor mode. The problem size was kept constant for all
partition sizes. The time per iteration reported is the wall-clock time needed to compute a
single steepest-descent iteration on electronic states. Times are reported for the best node
mapping at each partition size.

nodes time/iteration (s) speedup frac speedup agg. FP rate (TF) peak FP fraction
1024 1040 1.00 1.00 0.89 0.31
2048 449 2.32 1.16 1.95 0.34
4096 210 4.95 1.24 4.13 0.36
8192 121 8.60 1.07 7.11 0.31

16384 66 15.76 0.98 13.76 0.30
32768 38 27.37 0.86 22.02 0.24

Table 1 Qbox performance data for a molybdenum simulation including 1000 atoms and 12000 electrons.
The fractional speedup represents the fraction of ideal speedup obtained with respect to the 1024-node
partition. The aggregate FP rate and the peak fraction are measured with the APC performance counters
and represent a lower bound (see text). The peak FP rate for 32k nodes in coprocessor mode is 91.75 TF.

We observe superlinear scaling with 2k-8k CPUs. This is attributed to 1) a reduction in
the amount of data residing on each node, and thus leading to better use of the cache, and
2) the fact that optimal node mappings lead to more efficient communication on the 2k-
and 4k-node partitions than on the 1k-node partition.

0
5

10
15
20
25
30
35

0 4 8 12 16 20 24 28 32

kCPUs

Sp
ee

du
p

Measured
Ideal

Figure 1 Strong scaling of Qbox for a simulation of 1000 molybdenum atoms. A scaling efficiency of 86%
is achieved between 1k and 32k CPUs.

Ongoing Research and Anticipated Results
The results presented in this paper are current as of April 25th, 2005 and represent lower
bounds on the performance of Qbox on BG/L. Ongoing developments in both application
and system software will improve some of these results. In the following, we discuss
some likely sources of performance improvement.

Generation of SIMD instructions using the xlC compiler
As of the submission date, the ability of the BG/L xlC compiler to generate vectorized
(SIMD) instructions has not yet reached its full potential. Further improvements in the
compiler are likely to improve the performance of Qbox. The current performance of
Qbox is however obtained principally through the use of the hand-optimized DGEMM
library, and (to a lesser extent) of the FFTW-GEL library. Thus, we expect that improved
generation of SIMD instruction will not drastically change the performance figures.

Optimized BGL MPI implementation
The current version of the BG/L MPI library provides an MPICH implementation of most
functions, and optimized implementations of many MPI collective operations that exploit
BG/L’s torus and tree networks. We found that for some partition sizes (in particular the
full machine, 32k node partition), some optimized implementations had to be disabled in
order to obtain correct results. Further developments will likely allow us to remove this
constraint, and increase performance over the numbers presented here.

Furthermore, the current BG/L MPI implementation does not yet fully exploit the
possibility of using the I/O co-processor for communication. We expect that the future
availability of concurrent computation and communication when using co-processor
mode will further enhance the performance of Qbox on BG/L.

Conclusion
We have demonstrated the feasibility and excellent scalability of the Qbox code for
unprecedented large-scale First-Principles Molecular Dynamics on the BlueGene/L
platform on up to 32k CPUs. Our experiments indicate that a careful choice of node
mapping is essential in order to obtain good performance for this type of application.
Strong scalability of Qbox for a Materials Science problem involving 1000 molybdenum
atoms (12000 electrons) is excellent. A speedup of 24.7 is achieved when increasing the
partition size from 1k nodes to 32k nodes, which corresponds to a parallel efficiency of
86%. The use of hand-optimized libraries for linear algebra and Fourier transform
operations dramatically improves the effective floating point performance, which lies
between 24% and 37% of peak performance depending on partition size. This early
application of First-Principles Molecular Dynamics demonstrates that the exceptional
computing power provided by the BlueGene/L computer can be efficiently utilized and
will have an important impact in the area of first-principles modeling in the near future.

Acknowledgement
Work performed under the auspices of the U. S. Department of Energy by University of
California Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
S. Kral was supported by LLNL subcontract No. B539881. F. Franchetti and J. Lorenz
were supported by the Austrian Science Fund FWF.

References
1. R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985). For a review, see e.g. M.

Parrinello, “From Silicon to RNA: the Coming of Age of First-Principles Molecular
Dynamics” Sol. St. Comm. 103, 107 (1997).

2. W. Kohn and L.J.Sham, Phys. Rev. A140, 1133 (1965).

3. T. Ogitsu, E. Schwegler, F. Gygi, and G. Galli, Phys. Rev. Lett. 91, 175502 (2003).

4. F. Gygi, “Qbox: a large-scale parallel implementation of First-Principles Molecular
Dynamics” (LLNL preprint, 2005).

5. N. R. Adiga et al., “An overview of the BlueGene/L supercomputer” SC2002 – High
Performance Networking and Computing, 2002.

6. L. Bachega, S. Chatterjee, K. Dockser, J. Gunnels, M. Gupta, F. Gustavson, C.
Lapkowski, G. Liu, M. Mendell, C. Wait, T.J.C. Ward, “A High-Performance SIMD
Floating Point Unit Design for BlueGene/L: Architecture, Compilation, and
Algorithm Design” PACT, 2004.

7. L.S.Blackford, J.Choi, A.Cleary, E.D’Azevedo, J.Demmel, I.Dhillon, J.Dongarra,
S.Hammarling, G.Henry, A.Petitet, K.Stanley, D.Walker, R.C.Whaley,
“ScaLAPACK Users’ Guide” SIAM, Philadelphia, (1997).

8. These caches are not coherent in “co-processor mode” operation, but the advantages
and disadvantages of this property are beyond the scope of this paper.

9. M. Frigo and S. G. Johnson: FFTW: an adaptive software architecture for the FFT,
Proceedings of ICASSP 1998, Vol.3, pages 1381-1384

10. J. Lorenz, S. Kral, F. Franchetti, C. W. Ueberhuber: Vectorization techniques for the
BlueGene/L double FPU, IBM Journal of Research and Development, Vol. 49, No.
2/3, 2005, pages 437-446

11. S. Kral: FFTW-GEL Homepage:
http://www.complang.tuwien.ac.at/skral/fftwgel.html

12. Franchetti, S. Kral, J. Lorenz, C. W. Ueberhuber: Efficient Utilization of SIMD
Extensions, Proceedings of the IEEE Special Issue on "Program Generation,
Optimization, and Adaptation," Vol. 93, No. 2, 2005, pages 409–425.

